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Zero-Point Fluctuations in Naphthalene and Their Effect on Charge Transport Parameters
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We calculate the effect of vibronic coupling on the charge transport parameters in crystalline naphthalene,
between 0 and 400 K. We find that nuclear fluctuations can cause large changes in both the energy of a
charge on a molecule and on the electronic coupling between molecules. As a result, nuclear fluctuations
cause wide distributions of both energies and couplings. We show that these distributions have a small
temperature dependence and that, even at high temperatures, vibronic coupling is dominated by the effect of
zero-point fluctuations. Because of the importance of zero-point fluctuations, we find that the distributions of
energies and couplings have substantial width, even at 0 K. Furthermore, vibronic coupling with high energy
modes may be significant, even though these modes are never thermally activated. Our results have implications
for the temperature dependence of charge mobilities in organic semiconductors.

1. Introduction

Despite the huge interest in the electronic applications of
conjugated organic solids, there remain fundamental questions
to be answered about the exact mechanism of charge transport
in these materials. The description of charge transport is
complicated by the disorder that is intrinsic to these materials
and by the effect of this disorder on charge transport parameters.
Disorder in organic solids may arise from impurities' or from
the noncrystalline packing of molecules.> However, even in a
perfect crystal, disorder can be caused by nuclear vibrations
which also change the value of charge transport parameters.
The effect of nuclear fluctuations on the electronic charge
transport parameters is known as vibronic coupling. We quantify
the effect of vibronic coupling on charge transport parameters
in crystalline naphthalene and investigate its temperature
dependence.

Within the tight-binding approximation, charge transport
through a molecular solid can be described by the Hamiltonian,3
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The site energy ¢; is the energy of a charge on molecule i. This
charge is created and annihilated by operators a; and a;,
respectively. Jj; is the electronic coupling between molecules i
and j. Both & and J;; are a function of nuclear coordinates &.

Using a Hamiltonian similar to eq 1, Troisi et al. have
proposed a model for charge transport that correctly predicts
the temperature dependence of the charge mobility in penta-
cene.* Pentacene displays “bandlike” transport, where the charge
mobility decreases with increasing temperature because thermal
nuclear fluctuations increasingly interfere with charge transfer.
Troisi et al. predict the correct temperature dependence by taking
large distributions of ¢; and J;; that increase with temperature.

The importance of vibronic coupling has previously been
shown.>>67 In particular, it has been demonstrated that nuclear
fluctuations cause wide distributions of J;; between pentacene
molecules.® However, to our knowledge, the effect of nuclear
fluctuations on &; has not been rigorously investigated in
conjugated organic solids. Furthermore, studies of vibronic
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coupling to date have always treated nuclear vibrations as
classical and therefore their results are limited to high
temperatures.

We quantify the effect of vibronic coupling on J;; and &; over
a temperature range from 0 to 400 K. To do so, we use both
quantum and classical sampling methods. In order to permit
large sampling sets and to allow the use of computationally
expensive quantum chemical calculations, we work with
naphthalene instead of pentacene. We simply consider the two
molecules in the naphthalene unit cell. For hole transport, the
electronic coupling between highest occupied molecular orbitals
(HOMOs) of the two uncharged molecules is relevant; we
denote this as Juyomo. For electron transport, the relevant
coupling is between the lowest unoccupied molecular orbitals
(LUMOs), denoted Jumo. Likewise, the site energies for holes
and electrons are egomo and € umo, respectively. Because we
only consider a single unit cell, and because the site energy of
molecule i depends on the entire surrounding lattice, we are
unable to determine the absolute value of ehomo. Instead, we
calculate the difference in site energies for hole transport,

_ 2 1
Aeyono = €Homo — EHOMO 2
Molecules 1 and 2 are shown in Figure 1.

2. Methodology

We consider the effect of nuclear fluctuations on Jyomo,
Jiumo, and Aegomo for the two molecules in the P2i/a unit
cell of naphthalene, shown in Figure 1. We find that density func-
tional theory (DFT) methods are required to accurately calculate
the effect of intramolecular vibrations on electronic structure.
All electronic calculations (Imperial College High Performance
Computing Service; URL: http:// www.imperial.ac.uk/ict/services/
teachingandresearchservices/highperformancecomputing) are
therefore performed with DFT in the generalized gradient
approximation of PW91° and the 6-311G* basis set with tight
convergence criteria as implemented in Gaussian.'® The
methods used to calculate J and Ag are given in ref 11 and
are not discussed further here.

The atomic coordinates of each molecule are optimized with
DFT and their relative positioning is taken from an experimental
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Figure 1. P2,/a unit cell of naphthalene showing the lattice vectors
and axes of phonon librations.

structure.'? The value of Juyomo that is calculated for the
undistorted molecules is found to be in good agreement with
similar results in the literature.? In order to sample the vibronic
coupling over a wide range of temperatures, we use both
quantum and classical methods to sample nuclear fluctuations.
2.1. Quantum Sampling. Our quantum sampling method
relies upon the harmonic approximation. A distortion from the
optimized geometry of the two molecules A§ is described by a
superposition of distortions along the normal modes of the
system Z‘I so that A§ = ElZl + 527_52 + oo+ §3N_3Z3N_3. If
the normal modes are considered to be independent and
harmonic, the Hamiltonian of the system is given by

H = 3Ni3 _h_za_z_{_l‘u w 252 3)
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where the energy of the optimized geometry has been set to
zero. The three translations of the entire unit cell are ignored
since these modes are irrelevant to the interaction between the
two molecules in the cell. u, is the reduced mass of mode ¢,
and w, is its frequency. When in equilibrium with a thermal
bath of temperature 7, the probability of a distortion &, along
mode ¢ is given by!?
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where EY is the thermal energy of mode ¢ given by Ej =
(n! + 12)hw,. The average number of excited quanta in the
oscillator, n;h, is given by the Bose—Einstein distribution. The
probability of distortion A is given by

3N—3
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It is worth stressing that at absolute zero Eflh(O K) = 1/zf’uuq,
and as a result, there remains a finite probability of distortion
A& away from the equilibrium geometry.

The accuracy of this sampling method relies on the accuracy
of the harmonic approximation. As temperatures rise, molecular
distortions become larger and higher order terms in eq 3 become
non-negligible, so the approximation breaks down. Previous
studies on biphenyl have demonstrated that quantum sampling
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TABLE 1: Frequencies and Reduced Masses of the Nine
Optical Phonon Modes of Crystalline Naphthalene®

I-point frequency  reduced mass

mode (cm 7 (amu)
translations: a 106.74 7.11
b 78.05 7.11

c 57.71 7.11

in-phase librations: L 130.09 4.12
M 54.37 5.21

N 84.06 4.85

out-of-phase librations: L 112.41 4.12
M 64.38 5.21

N 79.39 4.85

“ Frequencies are taken from ref 17. See Figure 1 for description
of modes.

can be accurate up to several hundred kelvin.'* We assess the
validity of the harmonic approximation in section 3.1.

We assume that the intermolecular phonon modes are
uncoupled to the intramolecular vibrational modes. This has been
shown to be a reasonable approximation for naphthalene.'> The
intramolecular modes, their frequencies, and reduced masses
are calculated with high precision frequency calculations and
agree well with the literature.'® As discussed above, we neglect
the acoustic phonons since we are only dealing with molecules
within a single unit cell. For the optical phonon modes, we take
the frequencies from the I point of neutron scattering experi-
ments.!” The reduced masses of the optical modes are calculated
as the renormalization factor in the transformation from Car-
tesian to mass-weighted coordinates, consistent with the treat-
ment of the intramolecular modes. Table 1 summarizes the
details of the optical phonon modes that we used in our
sampling.

2.2. Classical Sampling. We use the MM3 forcefield'® which
is fitted to structural and vibrational data for hydrocarbon
crystals.!® By calculating the bond order of sp> carbons
semiempirically, MM3 predicts a structure for naphthalene that
is in good agreement with experiment.?°

We simulate a supercell of naphthalene composed of 4 x 4
X 4 primitive unit cells whose structure was taken from ref 12.
Periodic boundary conditions were applied in all directions. The
supercell was relaxed into the MM3 energy minimum with a
tolerance of 1.0 kcal/(mol A); though this changes the bond
lengths slightly, it is an essential step to avoid structural stress
which would otherwise disturb the initial dynamics of the
simulation. All calculations were done with the TINKER
package.?!22

Dynamic simulations were carried out at 100, 200, 300, and
400 K in an NPT ensemble at atmospheric pressure with
Berendsen’s algorithm?® and timesteps of 1 fs. Coordinate
snapshots were taken every 10 ps over a total simulation time
of 1 ns; we assume that 10 ps is long enough to ensure that
there is no correlation between snapshots. In order to preserve
a large range of normal mode components, only C—H bond
lengths were constrained. The geometry of molecules in each
unit cell were taken from each of these snapshots and these
coordinates were used to perform the single point quantum
chemical calculations discussed above.

Classically sampling distortions along normal mode g with
frequency w, is only valid if Aw, is substantially smaller than
kgT where kg is Boltzmann’s constant. Therefore classical
sampling will perform badly at low temperatures or where high
frequency modes are important.
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Figure 2. Potential energy of distortion as predicted by the harmonic
approximation and as calculated with DFT at 0 and 300 K. The inset
shows the root-mean-square deviation between harmonic and DFT
energies as a function of temperature.

3. Results

Except where stated, the quantum sampling method used 2000
points while the classical method used 1000 points; in both
cases, we found this was sufficient for good convergence.

3.1. Harmonic Approximation. We first assess the accuracy
of our quantum sampling method by testing the harmonic
approximation (eq 3). Figure 2 shows the correlation between
the potential energies as predicted by the harmonic approxima-
tion and as calculated by DFT. Even at O K the harmonic values
are not perfectly correlated to the DFT values, perhaps because
distortions along different modes are not perfectly additive or
because the harmonic approximation is already inaccurate for
some modes. As expected, the harmonic approximation is worse
at 300 K because the distortions along each normal mode are
larger so that higher order terms in eq 3 become important. The
root-mean-square deviation between harmonic and the DFT
energies as a function of temperature is shown as an inset to
Figure 2. Since the average potential energy of a distortion at
0 K is almost 4 eV, a disagreement between harmonic and DFT
energies of 0.2 eV can be regarded as small. The harmonic
approximation appears valid even at 300 K, perhaps because
naphthalene is a relatively stiff molecule with only a few low
energy vibrational modes.

3.2. Distribution of J. Figure 3 shows the distribution of
Juomo and Jrumo at 200 K, with molecular configurations
sampled by both classical and quantum methods. We find that
the spread in J is very large compared to its typical magnitude,
a result which agrees with a similar study of pentacene.®

The results from classical and quantum sampling are very
similar. This suggests that the low frequency intermolecular
phonon modes are largely responsible for modulating J and that,
at 200 K, these modes are accurately sampled by both quantum
and classical methods.

Figure 4 plots the change in the absolute HOMO coupling
|/Homol as molecule 2 is distorted along a single mode while
molecule 1 is kept in its optimized geometry. All other modes
are frozen. Distortions along several intermolecular and in-
tramolecular modes are shown up to the point where §/(7) =
(2EW/k,)'2 at 300 K; classically, this is equivalent to the
maximum distortion of the harmonic oscillator at 300 K. Note
that for the high energy intermolecular modes, §,(0 K) = Eq(309

K) because nfih = () in both cases. Large distortions up to 0.8 A
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Figure 3. Distribution of the Jyomo and Jiumo at 200 K: classical
(molecular dynamics (MD)) and quantum (quantum mechanics (QM))
sampling of molecular configurations.
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Figure 4. Variation in [/yomol for distortions of a single molecule along
a single mode. A range of intermolecular and intramolecular modes
are shown—note the large difference in the scales of the two graphs.
Distortions are sampled to £,(T) = (2ES(T)/k,)' at 300 K.

are possible along the low energy modes and these can vary
|/romol by over 20 meV. This is consistent with results in ref
24. Because distortions are smaller along the high energy modes,
they generally have a smaller effect on l/gomol. However, the
mode at 1632 cm™! is an exception to this rule and has a very
large effect on l/gomol. The vibronic coupling of individual
modes is discussed in more detail in section 3.4.

3.3. Distribution of Ae. Figure 5 shows the distribution of
Aéepomo at 200 K as sampled by classical and quantum methods.
Aéepgomo is the energy required by holes to transfer from
molecule 1 to molecule 2; the fact that Aegomo is usually large
and positive implies that molecule 1 is generally energetically
favored by holes (see Figure 1). This is because a hole in the
HOMO of molecule 2 interacts unfavorably with the positively
charged hydrogens of molecule 1.!! However, nuclear fluctua-
tions can occasionally shift the energetic balance to favor
molecule 2.

The agreement between classical and quantum sampling is
poor. This is because high energy modes are important, and
these are not sampled accurately with the classical method; this
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Figure 5. Distribution of Aepomo at 200 K: classical (MD) and
quantum (QM) sampling of molecular configurations.
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Figure 6. Standard deviation of (a) Aenomo and (b) lJuomol due to
distortions along individual modes at 0 K: quantum sampling of
molecular configurations.

is discussed further in section 3.4. Our distributions of Aegomo
are consistent with studies on one-dimensional intermolecular
distortions of pentacene pairs.'!

3.4. Effect of Zero-Point Fluctuations. We calculate the
vibronic coupling of zero-point fluctuations along a single
normal mode by freezing all other modes, sampling distortions
along the chosen mode at 0 K, and measuring the standard
deviation in Aegomo and l/gomol. Both molecules are allowed
to distort independently along the chosen mode. For each mode
we sample 100 distortions.

The standard deviations o(l/gomol) and o(Aegomo) are shown
in Figure 6 against the vibrational frequency of each mode. This
figure shows that zero-point fluctuations can be responsible for
large values of o(I/uomol) and o(Aegomo)-

Although it is commonly known that low energy modes can
modulate Juomo significantly,®!! Figure 6 demonstrates that high
energy modes can also have significant effects. While never
thermally activated, small distortions along high energy modes
can nevertheless give o(lJgomol) of about 4 meV. This is a
significant modulation in [/gomol as it is half the value of [/gomol
in the optimized geometry of the two molecules.

As suggested in section 3.3, Aegomo is particularly sensitive
to distortions along high energy modes. Modes at 1385 and 1576

Kwiatkowski et al.
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Figure 7. Effect of temperature on the standard deviation of (a) Aexomo
and (b) lJuomol distributions: classical (MD) and quantum (QM)
sampling of molecular configurations.

cm™! modulate Aegomo very strongly indeed. These modes
symmetrically stretch the C—C bonds which are defined by the
HOMO. Therefore even small distortions along these modes
substantially change the energy of the HOMO and so &enomo.

Because a range of modes contribute to the deviation in both
Aéenomo and Jyomo, the electronic structure of organic solids
must fluctuate over a wide range of timescales, from the period
of the slowest intermolecular mode (~650 fs) to the period of
the fastest intramolecular mode (~10 fs). The modulation of J
by high energy modes has possible implications for the
Franck—Condon approximation that is made in semiclassical
Marcus theory and this is discussed in the Supporting Informa-
tion.

3.5. Temperature Dependence of Vibronic Coupling.
Figure 7 shows the temperature dependence of o(l/yomol) and
o(Aegomo) as sampled with both classical and quantum
methods. Because of the effect of zero-point fluctuations, we
find that there is substantial disorder in both Jyomo and Aegomo
at 0 K.

Because the effect of low energy modes dominate o(l/nomol)
at high temperatures, there is good agreement between classical
and quantum methods, as discussed in section 3.2. However,
even at 300 K, o(IJgyomol) is only 1.4 times larger than the
deviation at 0 K. This implies that although the low energy
modes are thermally activated, their contribution to the total
vibronic coupling is dominated by distortions that would happen
anyway at 0 K. Because of the importance of the zero-point
fluctuations, the classical sampling method underestimates the
value of o(I/uomol) at low temperatures and overestimates its
temperature dependence.

Because Aepomo is almost entirely modulated by the zero-
point fluctuations of high energy modes (section 3.4), and
because these modes are never thermally activated in this
temperature range, o(Aenomo) is independent of temperature.
Because of its inability to treat the zero-point fluctuations of
these modes, the classical method drastically underestimates
o(Aenomo) and incorrectly predicts a temperature dependence.

We suggest these results are relevant to charge transport in
ultra pure organic crystals. Charge transport in these crystals is
described as “bandlike” because the charge mobility is limited
by thermal fluctuations.”> The mobility therefore shows a
negative temperature dependence and its largest value is at
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temperatures that tend to 0 K. Recent work has explained the
bandlike transport in pentacene in terms of o(lJuomol) and
o(Aenomo) that increase with temperature.* Our results show
that the temperature dependence of o(l/uomol) and o(Aenomo)
is not as large as would be predicted by a purely classical
approach, and this will have implications on the temperature
dependence of the charge mobility. Furthermore, our results
suggest that the largest possible charge mobility at O K will be
limited by the effect of nuclear zero-point fluctuations on
o(l/aomol) and o(Aegomo).

4. Conclusions

We have illustrated that a consideration of vibronic coupling
is important for an accurate description of intermolecular charge
transfer in conjugated organic solids. We have shown that
substantial spreads in the values of J and A¢ can be caused by
zero-point fluctuations and that high energy modes, which may
never be thermally activated, can nevertheless have substantial
effects. We have demonstrated that the effects of zero-point
fluctuations dominate vibronic coupling, even at temperatures
as high as 300 K. When the effects of zero-point fluctuations
are properly considered, the vibronic coupling has a temperature
dependence that is smaller than would be predicted by purely
classical methods; this has implications on the temperature
dependence of charge mobility in organic semiconductors with
bandlike charge transport. We suggest that the largest charge
mobilities possible in these materials (at 0 K) will be determined
by the effect of zero-point fluctuations on o(l/uomol) and
0(Aenomo)-
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Supporting Information Available: Discussion of the
Franck—Condon approximation that is made in semiclassical
Marcus theory. Though not necessarily applicable to naphtha-
lene, semiclassical Marcus theory is commonly used to describe
charge transfer between conjugated organic molecules. The
Franck—Condon approximation allows J;; to be treated as a
constant throughout the charge transfer; we analyze this
approximation for naphthalene based on our above results. This
material is available free of charge via the Internet at http:/
pubs.acs.org.
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